Techniques
3D Rendering Techniques
(From https://en.wikipedia.org/wiki/Rendering_(computer_graphics))
Many rendering algorithms have been researched, and software used for rendering may employ a number of different techniques to obtain a final image.
Tracing every particle of light in a scene is nearly always completely impractical and would take a stupendous amount of time. Even tracing a portion large enough to produce an image takes an inordinate amount of time if the sampling is not intelligently restricted.
Therefore, a few loose families of more-efficient light transport modeling techniques have emerged:
- rasterization, including scanline rendering, geometrically projects objects in the scene to an image plane, without advanced optical effects;
- ray casting considers the scene as observed from a specific point of view, calculating the observed image based only on geometry and very basic optical laws of reflection intensity, and perhaps using Monte Carlo techniques to reduce artifacts;
- ray tracing is similar to ray casting, but employs more advanced optical simulation, and usually uses Monte Carlo techniques to obtain more realistic results at a speed that is often orders of magnitude faster.
The fourth type of light transport technique, radiosity is not usually implemented as a rendering technique but instead calculates the passage of light as it leaves the light source and illuminates surfaces. These surfaces are usually rendered to the display using one of the other three techniques.
Most advanced software combines two or more of the techniques to obtain good-enough results at reasonable cost.
Another distinction is between image order algorithms, which iterate over pixels of the image plane, and object order algorithms, which iterate over objects in the scene. Generally object order is more efficient, as there are usually fewer objects in a scene than pixels.
Rasterisation
A high-level representation of an image necessarily contains elements in a different domain from pixels. These elements are referred to as primitives. In a schematic drawing, for instance, line segments and curves might be primitives. In a graphical user interface, windows and buttons might be the primitives. In rendering of 3D models, triangles and polygons in space might be primitives.
If a pixel-by-pixel (image order) approach to rendering is impractical or too slow for some task, then a primitive-by-primitive (object order) approach to rendering may prove useful. Here, one loop through each of the primitives, determines which pixels in the image it affects, and modifies those pixels accordingly. This is called rasterization, and is the rendering method used by all current graphics cards.
Rasterization is frequently faster than pixel-by-pixel rendering. First, large areas of the image may be empty of primitives; rasterization will ignore these areas, but pixel-by-pixel rendering must pass through them. Second, rasterization can improve cache coherency and reduce redundant work by taking advantage of the fact that the pixels occupied by a single primitive tend to be contiguous in the image. For these reasons, rasterization is usually the approach of choice when interactive rendering is required; however, the pixel-by-pixel approach can often produce higher-quality images and is more versatile because it does not depend on as many assumptions about the image as rasterization.
The older form of rasterization is characterized by rendering an entire face (primitive) as a single color. Alternatively, rasterization can be done in a more complicated manner by first rendering the vertices of a face and then rendering the pixels of that face as a blending of the vertex colors. This version of rasterization has overtaken the old method as it allows the graphics to flow without complicated textures (a rasterized image when used face by face tends to have a very block-like effect if not covered in complex textures; the faces are not smooth because there is no gradual color change from one primitive to the next). This newer method of rasterization utilizes the graphics card’s more taxing shading functions and still achieves better performance because the simpler textures stored in memory use less space. Sometimes designers will use one rasterization method on some faces and the other method on others based on the angle at which that face meets other joined faces, thus increasing speed and not hurting the overall effect.
Raycasting
In ray casting the geometry which has been modeled is parsed pixel by pixel, line by line, from the point of view outward, as if casting rays out from the point of view. Where an object is intersected, the color value at the point may be evaluated using several methods. In the simplest, the color value of the object at the point of intersection becomes the value of that pixel. The color may be determined from a texture-map. A more sophisticated method is to modify the color value by an illumination factor, but without calculating the relationship to a simulated light source. To reduce artifacts, a number of rays in slightly different directions may be averaged.
Ray casting involves calculating the “view direction” (from camera position), and incrementally following along that “ray cast” through “solid 3d objects” in the scene, while accumulating the resulting value from each point in 3D space. This is related and similar to “ray tracing” except that the raycast is usually not “bounced” off surfaces (where the “ray tracing” indicates that it is tracing out the lights path including bounces). “Ray casting” implies that the light ray is following a straight path (which may include traveling through semi-transparent objects). The ray cast is a vector that can originate from the camera or from the scene endpoint (“back to front”, or “front to back”). Sometimes the final light value is derived from a “transfer function” and sometimes it’s used directly.
Rough simulations of optical properties may be additionally employed: a simple calculation of the ray from the object to the point of view is made. Another calculation is made of the angle of incidence of light rays from the light source(s), and from these as well as the specified intensities of the light sources, the value of the pixel is calculated. Another simulation uses illumination plotted from a radiosity algorithm, or a combination of these two.
Raytracing
Ray tracing aims to simulate the natural flow of light, interpreted as particles. Often, ray tracing methods are utilized to approximate the solution to the rendering equation by applying Monte Carlo methods to it. Some of the most used methods are path tracing, bidirectional path tracing, or Metropolis light transport, but also semi realistic methods are in use, like Whitted Style Ray Tracing, or hybrids. While most implementations let light propagate on straight lines, applications exist to simulate relativistic spacetime effects.
In a final, production quality rendering of a ray traced work, multiple rays are generally shot for each pixel, and traced not just to the first object of intersection, but rather, through a number of sequential ‘bounces’, using the known laws of optics such as “angle of incidence equals angle of reflection” and more advanced laws that deal with refraction and surface roughness.
Once the ray either encounters a light source, or more probably once a set limiting number of bounces has been evaluated, then the surface illumination at that final point is evaluated using techniques described above, and the changes along the way through the various bounces evaluated to estimate a value observed at the point of view. This is all repeated for each sample, for each pixel.
In distribution ray tracing, at each point of intersection, multiple rays may be spawned. In path tracing, however, only a single ray or none is fired at each intersection, utilizing the statistical nature of Monte Carlo experiments.
As a brute-force method, ray tracing has been too slow to consider for real-time, and until recently too slow even to consider for short films of any degree of quality, although it has been used for special effects sequences, and in advertising, where a short portion of high quality (perhaps even photorealistic) footage is required.
However, efforts at optimizing to reduce the number of calculations needed in portions of a work where detail is not high or does not depend on ray tracing features have led to a realistic possibility of wider use of ray tracing. There is now some hardware accelerated ray tracing equipment, at least in prototype phase, and some game demos which show use of real-time software or hardware ray tracing.
Radiosity
Radiosity is a method which attempts to simulate the way in which directly illuminated surfaces act as indirect light sources that illuminate other surfaces. This produces more realistic shading and seems to better capture the ‘ambience’ of an indoor scene. A classic example is a way that shadows ‘hug’ the corners of rooms.
The optical basis of the simulation is that some diffused light from a given point on a given surface is reflected in a large spectrum of directions and illuminates the area around it.
The simulation technique may vary in complexity. Many renderings have a very rough estimate of radiosity, simply illuminating an entire scene very slightly with a factor known as ambiance. However, when advanced radiosity estimation is coupled with a high quality ray tracing algorithm, images may exhibit convincing realism, particularly for indoor scenes.
In advanced radiosity simulation, recursive, finite-element algorithms ‘bounce’ light back and forth between surfaces in the model, until some recursion limit is reached. The colouring of one surface in this way influences the colouring of a neighbouring surface, and vice versa. The resulting values of illumination throughout the model (sometimes including for empty spaces) are stored and used as additional inputs when performing calculations in a ray-casting or ray-tracing model.
Due to the iterative/recursive nature of the technique, complex objects are particularly slow to emulate. Prior to the standardization of rapid radiosity calculation, some digital artists used a technique referred to loosely as false radiosity by darkening areas of texture maps corresponding to corners, joints and recesses, and applying them via self-illumination or diffuse mapping for scanline rendering. Even now, advanced radiosity calculations may be reserved for calculating the ambiance of the room, from the light reflecting off walls, floor and ceiling, without examining the contribution that complex objects make to the radiosity – or complex objects may be replaced in the radiosity calculation with simpler objects of similar size and texture.
Radiosity calculations are viewpoint independent which increases the computations involved, but makes them useful for all viewpoints. If there is little rearrangement of radiosity objects in the scene, the same radiosity data may be reused for a number of frames, making radiosity an effective way to improve on the flatness of ray casting, without seriously impacting the overall rendering time-per-frame.
Because of this, radiosity is a prime component of leading real-time rendering methods, and has been used from beginning-to-end to create a large number of well-known recent feature-length animated 3D-cartoon films.
- Previous
- Next